63 research outputs found

    Rational Krylov for Stieltjes matrix functions: convergence and pole selection

    Full text link
    Evaluating the action of a matrix function on a vector, that is x=f(M)vx=f(\mathcal M)v, is an ubiquitous task in applications. When M\mathcal M is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the poles of the rational Krylov method for approximating xx when f(z)f(z) is either Cauchy-Stieltjes or Laplace-Stieltjes (or, which is equivalent, completely monotonic) and M\mathcal M is a positive definite matrix. Relying on the same tools used to analyze the generic situation, we then focus on the case M=I⊗A−BT⊗I\mathcal M=I \otimes A - B^T \otimes I, and vv obtained vectorizing a low-rank matrix; this finds application, for instance, in solving fractional diffusion equation on two-dimensional tensor grids. We see how to leverage tensorized Krylov subspaces to exploit the Kronecker structure and we introduce an error analysis for the numerical approximation of xx. Pole selection strategies with explicit convergence bounds are given also in this case

    Fast Hessenberg reduction of some rank structured matrices

    Full text link
    We develop two fast algorithms for Hessenberg reduction of a structured matrix A=D+UVHA = D + UV^H where DD is a real or unitary n×nn \times n diagonal matrix and U,V∈Cn×kU, V \in\mathbb{C}^{n \times k}. The proposed algorithm for the real case exploits a two--stage approach by first reducing the matrix to a generalized Hessenberg form and then completing the reduction by annihilation of the unwanted sub-diagonals. It is shown that the novel method requires O(n2k)O(n^2k) arithmetic operations and it is significantly faster than other reduction algorithms for rank structured matrices. The method is then extended to the unitary plus low rank case by using a block analogue of the CMV form of unitary matrices. It is shown that a block Lanczos-type procedure for the block tridiagonalization of ℜ(D)\Re(D) induces a structured reduction on AA in a block staircase CMV--type shape. Then, we present a numerically stable method for performing this reduction using unitary transformations and we show how to generalize the sub-diagonal elimination to this shape, while still being able to provide a condensed representation for the reduced matrix. In this way the complexity still remains linear in kk and, moreover, the resulting algorithm can be adapted to deal efficiently with block companion matrices.Comment: 25 page

    Quasiseparable Hessenberg reduction of real diagonal plus low rank matrices and applications

    Full text link
    We present a novel algorithm to perform the Hessenberg reduction of an n×nn\times n matrix AA of the form A=D+UV∗A = D + UV^* where DD is diagonal with real entries and UU and VV are n×kn\times k matrices with k≤nk\le n. The algorithm has a cost of O(n2k)O(n^2k) arithmetic operations and is based on the quasiseparable matrix technology. Applications are shown to solving polynomial eigenvalue problems and some numerical experiments are reported in order to analyze the stability of the approac

    Rational Krylov and ADI iteration for infinite size quasi-Toeplitz matrix equations

    Get PDF
    We consider a class of linear matrix equations involving semi-infinite matrices which have a quasi-Toeplitz structure. These equations arise in different settings, mostly connected with PDEs or the study of Markov chains such as random walks on bidimensional lattices. We present the theory justifying the existence in an appropriate Banach algebra which is computationally treatable, and we propose several methods for their solutions. We show how to adapt the ADI iteration to this particular infinite dimensional setting, and how to construct rational Krylov methods. Convergence theory is discussed, and numerical experiments validate the proposed approaches

    Exploiting rank structures for the numerical treatment of matrix polynomials

    Get PDF

    Solving rank structured Sylvester and Lyapunov equations

    Full text link
    We consider the problem of efficiently solving Sylvester and Lyapunov equations of medium and large scale, in case of rank-structured data, i.e., when the coefficient matrices and the right-hand side have low-rank off-diagonal blocks. This comprises problems with banded data, recently studied by Haber and Verhaegen in "Sparse solution of the Lyapunov equation for large-scale interconnected systems", Automatica, 2016, and by Palitta and Simoncini in "Numerical methods for large-scale Lyapunov equations with symmetric banded data", SISC, 2018, which often arise in the discretization of elliptic PDEs. We show that, under suitable assumptions, the quasiseparable structure is guaranteed to be numerically present in the solution, and explicit novel estimates of the numerical rank of the off-diagonal blocks are provided. Efficient solution schemes that rely on the technology of hierarchical matrices are described, and several numerical experiments confirm the applicability and efficiency of the approaches. We develop a MATLAB toolbox that allows easy replication of the experiments and a ready-to-use interface for the solvers. The performances of the different approaches are compared, and we show that the new methods described are efficient on several classes of relevant problems

    Low-rank updates and a divide-and-conquer method for linear matrix equations

    Get PDF
    Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differential equations. In this work, we present and analyze a new algorithm, based on tensorized Krylov subspaces, for quickly updating the solution of such a matrix equation when its coefficients undergo low-rank changes. We demonstrate how our algorithm can be utilized to accelerate the Newton method for solving continuous-time algebraic Riccati equations. Our algorithm also forms the basis of a new divide-and-conquer approach for linear matrix equations with coefficients that feature hierarchical low-rank structure, such as HODLR, HSS, and banded matrices. Numerical experiments demonstrate the advantages of divide-and-conquer over existing approaches, in terms of computational time and memory consumption

    A framework for structured linearizations of matrix polynomials in various bases

    Full text link
    We present a framework for the construction of linearizations for scalar and matrix polynomials based on dual bases which, in the case of orthogonal polynomials, can be described by the associated recurrence relations. The framework provides an extension of the classical linearization theory for polynomials expressed in non-monomial bases and allows to represent polynomials expressed in product families, that is as a linear combination of elements of the form ϕi(λ)ψj(λ)\phi_i(\lambda) \psi_j(\lambda), where {ϕi(λ)}\{ \phi_i(\lambda) \} and {ψj(λ)}\{ \psi_j(\lambda) \} can either be polynomial bases or polynomial families which satisfy some mild assumptions. We show that this general construction can be used for many different purposes. Among them, we show how to linearize sums of polynomials and rational functions expressed in different bases. As an example, this allows to look for intersections of functions interpolated on different nodes without converting them to the same basis. We then provide some constructions for structured linearizations for ⋆\star-even and ⋆\star-palindromic matrix polynomials. The extensions of these constructions to ⋆\star-odd and ⋆\star-antipalindromic of odd degree is discussed and follows immediately from the previous results

    Efficient cyclic reduction for QBDs with rank structured blocks

    Full text link
    We provide effective algorithms for solving block tridiagonal block Toeplitz systems with m×mm\times m quasiseparable blocks, as well as quadratic matrix equations with m×mm\times m quasiseparable coefficients, based on cyclic reduction and on the technology of rank-structured matrices. The algorithms rely on the exponential decay of the singular values of the off-diagonal submatrices generated by cyclic reduction. We provide a formal proof of this decay in the Markovian framework. The results of the numerical experiments that we report confirm a significant speed up over the general algorithms, already starting with the moderately small size m≈102m\approx 10^2
    • …
    corecore